Infinite Dimensional Geometric Singular Perturbation Theory for the Maxwell-Bloch Equations

نویسندگان

  • Govind Menon
  • György Haller
چکیده

We study the Maxwell–Bloch equations governing a two-level laser in a ring cavity. For Class A lasers, these equations have two widely separated time scales and form a singularly perturbed, semilinear hyperbolic system with two distinct characteristics. We extend Fenichel’s geometric singular perturbation theory [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53–98] to the Maxwell–Bloch equations by proving the persistence of a Ck, 0 < k < ∞, slow manifold under an unbounded perturbation. The proof is obtained by a modified graph transform method. We use uniform decay estimates of Constantin, Foias, and Gibbon [Nonlinearity, 2 (1989), pp. 241–269] to obtain a cone condition. These estimates rely on the energy preserving nature of the nonlinearity and the existence of two distinct characteristics. The cone condition and the fact that the unbounded perturbation generates a continuous group are used to define the graph transform. The slow manifold is a globally attracting, positively invariant manifold, with infinite dimension and codimension, that contains the attractor of the system. The slow manifold depends only continuously on ε and converges uniformly on (strongly) compact sets to the critical manifold. This enables us to rigorously decouple the slow and fast time scales and obtain a reduced (but still infinite-dimensional) dynamical system described by a functional differential equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Lattice differential equations embedded into reaction-diffusion systems

We show that lattice dynamical systems naturally arise on infinite-dimensional invariant manifolds of reaction-diffusion equations with spatially periodic diffusive fluxes. The result connects wave pinning phenomena in lattice differential equations and in reaction-diffusion equations in inhomogeneous media. The proof is based on a careful singular perturbation analysis of the linear part, wher...

متن کامل

Prolongation Loop Algebras for a Solitonic System of Equations

We consider an integrable system of reduced Maxwell–Bloch equations that describes the evolution of an electromagnetic field in a two-level medium that is inhomogeneously broadened. We prove that the relevant Bäcklund transformation preserves the reality of the n-soliton potentials and establish their pole structure with respect to the broadening parameter. The natural phase space of the model ...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Singular Perturbation Theory in Output Feedback Control of Pure-Feedback Systems

This paper studies output feedback control of pure-feedback systems with immeasurable states and completely non-affine property. Since availability of all the states is usually impossible in the actual process, we assume that just the system output is measurable and the system states are not available. First, to estimate the immeasurable states a state observer is designed. Relatively fewer res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2001